Copied to
clipboard

G = (C2xC42):C4order 128 = 27

8th semidirect product of C2xC42 and C4 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2xC42):8C4, C4.9C42:8C2, (C2xD4).268D4, (C2xQ8).210D4, C42:6C4:15C2, C42:C2:20C4, C42.141(C2xC4), C23.125(C2xD4), C4.85(C42:C2), C23.33(C22:C4), C42:C2.4C22, (C2xC42).253C22, (C22xC4).669C23, C4.1(C22.D4), C23.C23.4C2, C2.15(C23.34D4), (C2xM4(2)).163C22, C22.1(C22.D4), M4(2).8C22.6C2, (C4xC4oD4).8C2, (C2xC4).234(C2xD4), (C22xC4).76(C2xC4), (C2xC4).744(C4oD4), (C2xC4).46(C22:C4), (C2xC4).534(C22xC4), C22.35(C2xC22:C4), (C2xC4oD4).261C22, SmallGroup(128,559)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — (C2xC42):C4
C1C2C22C2xC4C22xC4C42:C2C4xC4oD4 — (C2xC42):C4
C1C2C2xC4 — (C2xC42):C4
C1C4C42:C2 — (C2xC42):C4
C1C2C2C22xC4 — (C2xC42):C4

Generators and relations for (C2xC42):C4
 G = < a,b,c,d | a2=b4=c4=d4=1, ab=ba, ac=ca, dad-1=ac2, bc=cb, dbd-1=bc2, dcd-1=abc >

Subgroups: 260 in 131 conjugacy classes, 50 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C42, C42, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C23:C4, C4.D4, C4.10D4, C2xC42, C2xC42, C42:C2, C42:C2, C4xD4, C4xQ8, C2xM4(2), C2xC4oD4, C4.9C42, C42:6C4, C23.C23, M4(2).8C22, C4xC4oD4, (C2xC42):C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C4oD4, C2xC22:C4, C42:C2, C22.D4, C23.34D4, (C2xC42):C4

Permutation representations of (C2xC42):C4
On 16 points - transitive group 16T291
Generators in S16
(1 10)(2 11)(3 12)(4 9)(5 13)(6 14)(7 15)(8 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 2 3 4)(5 13)(6 14)(7 15)(8 16)(9 10 11 12)
(1 16)(2 15 4 13)(3 14)(5 11)(6 12 8 10)(7 9)

G:=sub<Sym(16)| (1,10)(2,11)(3,12)(4,9)(5,13)(6,14)(7,15)(8,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,2,3,4)(5,13)(6,14)(7,15)(8,16)(9,10,11,12), (1,16)(2,15,4,13)(3,14)(5,11)(6,12,8,10)(7,9)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,13)(6,14)(7,15)(8,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,2,3,4)(5,13)(6,14)(7,15)(8,16)(9,10,11,12), (1,16)(2,15,4,13)(3,14)(5,11)(6,12,8,10)(7,9) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,13),(6,14),(7,15),(8,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,2,3,4),(5,13),(6,14),(7,15),(8,16),(9,10,11,12)], [(1,16),(2,15,4,13),(3,14),(5,11),(6,12,8,10),(7,9)]])

G:=TransitiveGroup(16,291);

On 16 points - transitive group 16T314
Generators in S16
(1 3)(2 4)(5 7)(6 8)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(5 8 7 6)(9 11)(10 12)(13 16 15 14)
(1 5 9 14)(2 6 12 13)(3 7 11 16)(4 8 10 15)

G:=sub<Sym(16)| (1,3)(2,4)(5,7)(6,8), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (5,8,7,6)(9,11)(10,12)(13,16,15,14), (1,5,9,14)(2,6,12,13)(3,7,11,16)(4,8,10,15)>;

G:=Group( (1,3)(2,4)(5,7)(6,8), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (5,8,7,6)(9,11)(10,12)(13,16,15,14), (1,5,9,14)(2,6,12,13)(3,7,11,16)(4,8,10,15) );

G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(5,8,7,6),(9,11),(10,12),(13,16,15,14)], [(1,5,9,14),(2,6,12,13),(3,7,11,16),(4,8,10,15)]])

G:=TransitiveGroup(16,314);

32 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C···4I4J···4Q4R4S4T4U8A8B8C8D
order1222222444···44···444448888
size1122244112···24···488888888

32 irreducible representations

dim111111112224
type++++++++
imageC1C2C2C2C2C2C4C4D4D4C4oD4(C2xC42):C4
kernel(C2xC42):C4C4.9C42C42:6C4C23.C23M4(2).8C22C4xC4oD4C2xC42C42:C2C2xD4C2xQ8C2xC4C1
# reps122111443184

Matrix representation of (C2xC42):C4 in GL4(F5) generated by

0013
0040
0400
2200
,
0021
0030
0300
4400
,
0040
0004
2200
1300
,
0004
0030
2100
3300
G:=sub<GL(4,GF(5))| [0,0,0,2,0,0,4,2,1,4,0,0,3,0,0,0],[0,0,0,4,0,0,3,4,2,3,0,0,1,0,0,0],[0,0,2,1,0,0,2,3,4,0,0,0,0,4,0,0],[0,0,2,3,0,0,1,3,0,3,0,0,4,0,0,0] >;

(C2xC42):C4 in GAP, Magma, Sage, TeX

(C_2\times C_4^2)\rtimes C_4
% in TeX

G:=Group("(C2xC4^2):C4");
// GroupNames label

G:=SmallGroup(128,559);
// by ID

G=gap.SmallGroup(128,559);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,58,2019,172,2028,1027]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*c^2,b*c=c*b,d*b*d^-1=b*c^2,d*c*d^-1=a*b*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<